Музыкальная акустика.
ЗВУК Изучением звука как физического явления занимается наука акустика. Изучение музыкальной акустики является неотъемлимой частью любого курса композиции электроакустической музыки, главным материалом которой является собственно природа звука и его восприятия человеком.
Громкость звука определяется амплитудой звуковых колебаний,
Скорость распространения звуковой волны - 340 м / сек при нормальной температуре.
Интерференция волн — сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны. Когда мы слышим звуки разных, но достаточно близких частот сразу от двух источников, к нам приходят то гребни обеих звуковых волн, то гребень одной волны и впадина другой. В результате наложения двух волн звук то усиливается, то ослабевает, что воспринимается на слух как биения. Этот эффект называется интерференцией во времени. Он используется при настройке двух музыкальных тонов в унисон (например, при настройке гитары): настройку производят до тех пор, пока биения перестают ощущаться. Звуковая волна при падении на границу раздела с другой средой может отразиться от нее, пройти в другую среду, изменить направление движения, т. е. преломиться от границы раздела (это явление называют рефракцией), поглотиться или одновременно совершить несколько из перечисленных действий. Степень поглощения и отражения зависит от свойств сред на границе раздела. Энергия звуковой волны в процессе ее распространения поглощается средой. Этот эффект называют поглощением звуковых волн. Важно отметить, что степень поглощения звуковой энергии зависит как от свойств среды (температура, давление, плотность), так и от частоты звуковых колебаний: чем выше частота, тем большее рассеяние претерпевает на своем пути звуковая волна. Стоячая волна — колебания в распределенных колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом, крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения. Чисто стоячая волна, строго говоря, может существовать только при отсутствии потерь в среде и полном отражении волн от границы. Обычно, кроме стоячих волн, в среде присутствуют и бегущие волны, подводящие энергию к местам её поглощения или излучения. Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе Собственная резонансная частота- это такая частота колебаний, с которой данное физическое тело начнет колебаться, будучи выведенным из состояния покоя какой-либо внешней возбуждающей силой, например толчком, как качели, маятник часов и др., или ударом, как ножки камертона, корпус колокола, струна рояля, или потоком воздуха, как труба органа или бутылка, если подуть в ее горлышко и т.д.. Собственную резонансную частоту называют иногда частотой свободных колебаний. Струны таких инструментов, как лютня, гитара, скрипка или фортепиано, имеют собственную резонансную частоту, напрямую зависящую от длины и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, его частота зависит от скорости v, с которой волна распространяется по струне. Три закона резонанса: Третий закон. Резонатор усиливает колебания, соответствующие его собственной частоте, не требуя практически никакой дополнительной энергии. Формантами называют области устойчивых резонансов, характерных для той или иной акустической системы и существенно влияющих на тембр. Например, каждому звуку речи (простейший звук речи называется фонемой) соответствует своя форма вокального тракта, которая варьируется за счет изменения положения языка, губ, зубов и т.п. и, соответственно, свое положение формант на частотной шкале. Вместе с тем есть области частот, которые певческими резонаторами усиливаются наиболее значительно и постоянно. Это так называемые высокая и низкая певческие форманты. Реверберация - сложный акустический процесс, возникающий при многократном отражении звуковой волны от различных объектов. Двигаясь в замкнутом пространстве (комната, зал), звуковая волна претерпевает многократные отражения от поверхности стен, различных объектов и т.п. Отраженные звуковые колебания, складываясь, могут сильно влиять на конечное восприятие звука — изменять его окраску, насыщенность, глубину, создавая характерное послезвучание, обусловленное приходом в точку измерения запоздавших отраженных или рассеянных звуковых волн. Способность огибать препятствия — еще одно ключевое свойство звуковых волн, называемое дифракцией. Степень огибания зависит от соотношения между длиной звуковой волны (ее частотой) и размером стоящего на ее пути препятствия или отверстия. Если препятствие оказывается намного больше длины волны, то звуковая волна отражается от него. Если же размер препятствия сопоставим с длиной волны или меньше ее, то звуковая волна дифрагирует. Эффект Доплера — еще одно интересное явление, связанное с распространением звуковых волн в пространстве. Он состоит в том, что длина волны (а, значит, и ее частота) изменяется в соответствии со скоростью движения слушателя относительно источника волны. Чем быстрее слушатель (регистрирующий датчик) приближается к источнику звуковых колебаний, тем регистрируемая им длина волны становится меньше и наоборот. Относительное изменение интенсивности звука измеряют в децибелах 0 db - предел чувствительности уха Изменение мощности также измеряют в децибелах,
но в этом случае число децибел равно десятичному логарифму отношения мощностей, умноженному на 10 а в 1000 раз: Вычисления вполне реально производить в уме, для этого достаточно помнить примерную несложную таблицу (для мощностей): 1дБ = 1.25 Закономерности восприятия человеком громкости, высоты и тембра звука
имеют
|
|||
Линейность восприятия высоты звука сильно зависит и от его интенсивности.
|
|||
Понятия "волна" и "спектр"
|