Элементы психоакустики  
Музыкальная акустика. ЗВУК.
Музыкальная акустика. Понятия "волна" и "спектр"

Психоакустика - наука, изучающая психологические и физиологические особенности восприятия звука человеком.

Слуховая система человека - сложный и очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим. В отдельном звуке восприятие выделяет пять основных свойств. Это громкость, тембр, высота, продолжительность и пространственная локализация. При этом громкость можно соотнести с амплитудой колебаний, тембр - с формой волны, высоту - с частотой колебаний.

В физическом мире частота, время и интенсивность считаются непрерывными измерениями, образующими своего рода континуум. Традиционная музыка строится на дискретных шкалах высоты и длительности. Очевидно при этом, что между любыми ступенями шкалы возможен непрерывный и, следовательно, бесконечный мир, требующий изучения и организации. Задумаемся над вопросом: каковы различия между спектром звука ноты, когда спектр определяет тембр, и спектром звука аккорда, рассматриваемого как элемент гармонии?

«Ухо приучается слышать сквозь определенную призму; его можно растревожить, привести в замешательство или даже повредить, предлагая ему объекты, среди которых оно не способно ориентироваться по привычным координатам. Действительно, переходя от анализа аккорда, сыгранного, на фортепиано, к анализу мультифонического звука, сыгранного на духовом инструменте, или воспроизведенного каким-либо ударным инструментом, вы испытываете трудности адаптации из-за самой природы предлагаемых вам объектов». (Пьер Булез)

«Самым сложным субъективно ощущаемым параметром является тембр. С определением этого термина возникают сложности, сопоставимые с определением понятия «жизнь»: все понимают, что это такое, однако над научным определением наука бьется уже несколько столетий» (И.Алдошина).

Органы слуха, выполняют двойное кодирование звука, как спектральное, так и временное, таким способом, что все реплики в обоих видах представления могут быть доступны одновременно в сенсорном представлении, посланном мозгу. Механизм кодирования приводит к появлению некоторых парадоксов и двусмысленностей.

«С одной стороны, звук - это объективное физическое явление, колебательный процесс, порождающий в упругой среде быстро распространяющиеся волны. С другой же - субъективное психологическое: нечто воспринятое слухом и отразившееся в сознании в виде особого психического образа» (Е.Назайкинский).

Слуховой образ может быть определен как психологическое представление звуковой сущности, которая демонстрирует некоторую когерентность в своем акустическом поведении. Мы структурируем акустический мир в терминах когерентных звуковых объектов, которые мы можем обнаружить, выделить, локализовать, и идентифицировать.

Когерентность в данном случае – это согласованное протекание во времени нескольких колебательных или волновых процессов, когда разность фаз этих процессов остается постоянной во времени или меняется по строго определенному закону.

Гештальт-психология (geschtalt, нем. - «образ») утверждает, что для разделения и распознавания различной звуковой информации, приходящей к слуховой системе от разных источников в одно и то же время (игра оркестра, разговор многих собеседников и др.) слуховая система (как и зрительная) использует некоторые общие принципы:

- сегрегация - разделение на звуковые потоки, т.е. субъективное выделение определенной группы звуковых источников, например, при музыкальной полифонии слух может отслеживать развитие мелодии у отдельных инструментов;

- подобие - звуки, похожие по тембру, группируются вместе и приписываются одному источнику, например, звуки речи с близкой высотой основного тона и похожим тембром определяются, как принадлежащие одному собеседнику;

- непрерывность - слуховая система может интерполировать звук из единого потока через маскер, например, если в речевой или музыкальный поток вставить короткий отрезок шума, слуховая система может не заметить его, звуковой поток будет продолжать восприниматься как непрерывный;

- «общая судьба» - звуки, которые стартуют и останавливаются, а также изменяются по амплитуде или частоте в определенных пределах синхронно, приписываются одному источнику. Таким образом, мозг производит группировку поступившей звуковой информации как последовательную («горизонтальную»), определяя распределение по времени звуковых компонент в рамках одного звукового потока, так и параллельную («вертикальную»), выделяя частотные компоненты, присутствующие и изменяющиеся одновременно. Память объединяет все эти процессы в результате слушания.

Когнитивные процессы, связанные с восприятием музыки имеют непосредственное отношение к таким факторам, как внимание, культурное знание, временная организация в восприятии. Происходит преобразование стимулов в потенциальные представления, которые являются не воспроизведением, но скорее абстракциями свойств стимулов. Мозг все время проводит сравнение поступившей звуковой информации с «записанными» в процессе обучения в памяти звуковыми образами. Сравнивая поступившие сочетания звуковых потоков с имеющимися образами, он или легко их идентифицирует, если они совпадают с этими образами, или, в случае неполного совпадения, приписывает им какие-то особые свойства (например, назначает виртуальную высоту тона, как в звучании колоколов).

Вертикальные и горизонтальные механизмы группировки могут находиться в сложном взаимодействии. Между «конкурирующими» звуковыми образами возможна борьба и взаимный перехват энергии, что часто приводит к изменению признаков высоты, громкости, тембра, характера и т.п. в процессе слухового восприятия.

Все вышеизложенные соображения имеют прямое влияние на формирование музыкальных структур, если, конечно, мы хотим сделать их понятными.

В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо. К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу (его длина около 3 см, а диаметр - около 0,5 см), и попадает в среднее ухо, где ударяется о барабанную перепонку - тонкую полупрозрачную мембрану. Барабанная перепонка преобразует звуковую волну в вибрации, усиливая эффект от слабой звуковой волны и ослабляя от сильной. Эти вибрации передаются по присоединенным к барабанной перепонке косточкам (молоточку, наковальне и стремечку) во внутреннее ухо, представляющее собой завитую трубку с жидкостью диаметром примерно 0,2 мм и длиной 4 см. Эта трубка называется улиткой. Внутри улитки находится еще одна мембрана, называемая базилярной, которая напоминает струну длиной 32 мм, вдоль которой располагаются чувствительные клетки (более 20 тыс. волокон). Толщина струны в начале улитки и у ее вершины различна. В результате такого строения мембрана резонирует разными своими частями в ответ на звуковые колебания разной высоты. Так, высокочастотный звук затрагивает нервные окончания, располагающиеся в начале улитки, а звуковые колебания низкой частоты - окончания в ее вершине. Механизм распознавания частоты звуковых колебаний достаточно сложен. В целом это анализ месторасположения затронутых колебаниями нервных окончаний, а также частоты импульсов, поступающих в мозг от нервных окончаний.

Основную информацию о звуковых колебаниях мозг получает в области частот до 4 кГц. Это вполне логично, поскольку все основные жизненно необходимые человеку звуки находятся именно в этой спектральной полосе (голоса других людей и животных, шум воды, ветра и т. п.). Частоты выше 4 кГц являются для человека лишь вспомогательными, что подтверждается многими опытами. В целом принято считать, что низкие частоты "ответственны" за разборчивость, ясность аудиоинформации, а высокие частоты - за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до 20 кГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов.

Интересен и исключительно важен тот факт, что порог слышимости слуховой системы, также как и кривые равных громкостей, непостоянен в разных условиях. Представленные выше значения порога слышимости справедливы для тишины. В случае проведения опытов по измерению порога слышимости не в полной тишине, а, например, в зашумленной комнате или при каком-то постоянном фоновом звуке, показатели окажутся другими. Это, в общем, совсем не удивительно. Ведь идя по улице и разговаривая с собеседником, мы вынуждены прерывать свою беседу, когда мимо нас проезжает какой-нибудь грузовик, поскольку его шум не позволяет нам слышать собеседника. Этот эффект называется частотной маскировкой. Причина появления эффекта частотной маскировки - схема восприятия звука слуховой системой. Мощный по амплитуде сигнал некоторой частоты ?т вызывает сильные возмущения базилярной мембраны на некотором ее отрезке. Близкий по частоте, но более слабый по амплитуде сигнал с частотой ? уже не способен повлиять на колебания мембраны и поэтому остается "незамеченным" нервными окончаниями и мозгом.

Эффект частотной маскировки справедлив для частотных составляющих, присутствующих в спектре сигнала в одно и то же время. Однако ввиду инерционности слуха эффект маскировки может распространяться и во времени. Так, некоторая частотная составляющая может маскировать другую частотную составляющую даже тогда, когда они появляются в спектре не одновременно, а с некоторой задержкой во времени. Этот эффект называется временной маскировкой. В случае, когда маскирующий тон появляется по времени раньше маскируемого, эффект называют пост-маскировкой. Когда маскирующий тон появляется позже маскируемого (возможен и такой случай), эффект называют пре-маскировкой.

Пространственное звучание

Человек слышит двумя ушами и поэтому способен различать направление прихода звуковых сигналов. Эту способность слуховой системы человека называют би-науральным эффектом. Механизм распознавания направления прихода звуков сложен, и надо сказать, что в его изучении и способах применения еще не поставлена точка.

Уши человека расположены на расстоянии друг от друга (по ширине головы). Скорость распространения звуковой волны невелика. Сигнал, приходящий от источника звука, находящегося напротив слушателя, приходит в оба уха одновременно, и мозг интерпретирует это как расположение источника сигнала либо позади, либо спереди, но не сбоку. Если же сигнал приходит от источника, смещенного относительно центра головы, то звук приходит в одно ухо раньше, чем во второе, что позволяет мозгу интерпретировать это как приход сигнала слева или справа и даже приблизительно определить угол прихода. Численно разница во времени прихода сигнала в левое и правое ухо, составляющая от 0 до 1 мс, смещает мнимый источник звука в сторону того уха, которое воспринимает сигнал раньше. Такой способ определения направления прихода звука используется мозгом в полосе частот от 300 Гц до 1 кГц. Направление прихода звука для частот выше 1 кГц определяется мозгом человека путем анализа громкости звука. Дело в том, что звуковые волны с частотой выше 1 кГц быстро затухают в воздушном пространстве. Поэтому интенсивность звуковых волн, доходящих до левого и правого ушей слушателя, отличаются, что позволяет мозгу определять направление прихода сигнала по разнице амплитуд. Если звук в одном ухе слышен лучше, чем в другом, следовательно, источник звука находится со стороны того уха, в котором он слышен лучше. Подспорьем в определении направления прихода звука является способность человека повернуть голову в сторону кажущегося источника звука, чтобы проверить верность определения. Способность мозга определять направление прихода звука по разнице во времени прихода сигнала в левое и правое ухо, а также путем анализа громкости сигнала используется в стереофонии6.

Имея всего два источника звука, можно создать у слушателя ощущение наличия мнимого источника зву ка между двумя физическими. Причем этот мнимый источник можно "расположить" в любой точке на линии, соединяющей два физических источника. Для этого нужно воспроизвести одну аудиозапись (например, со звуком рояля) через оба физических источника, но сделать это с некоторой временной задержкой в одном из них и соответствующей разницей в громкости. Грамотно используя описанный эффект, можно при помощи двухканальной аудиозаписи донести до слушателя почти такую картину звучания, какую он ощутил бы сам, лично присутствуя, например, на каком-нибудь концерте. Такую двухканальную запись называют стереофонической. Одноканальная же запись называется монофонической.

На самом деле для качественного донесения до слушателя реалистичного пространственного звучания обычной стереофонической записи не всегда достаточно. Основная причина этого кроется в том, что стереосигнал, приходящий к слушателю от двух физических источников звука, определяет расположение мнимых источников лишь в той плоскости, в которой расположены реальные физические источники звука. Естественно, "окружить слушателя звуком" при этом не удается. По той же причине заблуждением является и мысль о том, что объемное звучание обеспечивается квадрофониче-ской (четырехканальной) системой (два источника перед слушателем и два позади него). В целом путем выполнения многоканальной записи нам удается лишь донести до слушателя тот звук, каким он был "услышан" расставленной нами звуковоспринимающей аппаратурой (микрофонами). Для воссоздания же более или менее реалистичного, действительно объемного звучания прибегают к принципиально другим подходам, в основе которых лежат более сложные приемы, моделирующие особенности слуховой системы человека, а также физические особенности и эффекты передачи звуковых сигналов в пространстве.

Музыкальная акустика. ЗВУК

Музыкальная акустика. Понятия "волна" и "спектр"